SYNTHESIS AND SOME REACTIONS OF CINNOLINE DERIVATIVES

Mohamed S. K. Youssef, Adel M. Kamal El-Dean, Mohamed S. Abbady* and Khairy M. Hassan

Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt

Received July 30, 1990 Accepted January 29, 1991

Biological activities of pyridazine systems¹ receive increasing interest since they were found in nature². Recently another naturally occurring 1,2-diazine derivative nigellicine³ has been described⁴. Gewald et al.⁵ reported that the intermolecular Friedel-Crafts reaction of arylhydrazono derivatives yielded cinnoline. According to this method the 3-acetyl-4-hydroxycinnolines IIa-IId were synthesized to be starting material for preparation of different heterocyclic compounds with pyridazine system. Condensation of II with thiosemicarbazide in boiling acetic acid gives the corresponding thiosemicarbazones III (Scheme 1). Compounds III interacted with

In formulae I-III: a, R = H; b, $R = CH_3$; c, $R = OCH_3$; d, R = Br

SCHEME 1

some α -haloketones and/or α -haloesters giving the thiazolyl derivatives IV-VII. By substitution of the latter reactants with diethyl malonate the pyrimidine thione derivative VIII was produced (Scheme 2). Compounds II with hydrazine or phenyl hydrazine yielded substituted pyrazolocinnolines IX. Fusion of II with malononitrile and ethyl cyanoacetate gave pyridocinnoline X and pyranocinnoline XI, respectively (Scheme 3). Alternative preparation of IId from IIa was elaborated (Scheme 4); bromination of IIa by N-bromosuccinimide (NBS) leads, however, to the bromoacetyl derivative XII.

TABLE I Physical and spectral data of compounds II and III

pound IIa 15	°C 155–156	%	(1)		The second secon			CHOOL CHOOLE
	5-156		(M.W.)	2 %	Н%	Z %	s %	- Spectral data
		65	C ₁₀ H ₈ N,0,	63.82	4.25	14.89	Ī	IR: 3 150 (OH); 1 700 (C=0)
			(188.2)	64.00	4.38	14.52	ł	¹ H NMR ^a : 2·5 s, 3 H (CH ₃); 7·4 m, 4 H
								(Ar-H); 14·0 s, 1 H (OH)
	195	70	$C_{11}H_{10}N_2O_2$	65.34	4.95	13.86	١	IR: 3 150 (OH); 1 690 (C=O)
			(202·2)	65.40	5.15	14·10	i	
IIc 17	174-175	75	$C_{11}H_{10}N_2O_3$	60.55	4.58	12.84	I	IR: 3 150 (OH); 1 690 (C=O).
			(218·2)	29.09	4.32	13.08	1	¹ H NMR ^q : 2·4 s, 3 H (CH ₃); 3·8 s, 3 H (OCH ₃); 7·3 m, 3 H (Ar-H); 13·5 s, 1 H (OH)
IId	220	62	$C_{10}H_7BrN_2O_2$	44.94	2.62	10.84	ı	IR: 3 150 (OH); 1 700 (C=0).
			(267·1)	45.12	2.98	10.12	1	¹ H NMR ^q : 2·5 s, 3 H (CH ₃); 7·5 m, 3 H (Ar-H); 13·7 s, 1 H (OH)
IIIa 25	256-257	70	C, H, N, OS	50.57	4.21	26.81	12.26	IR: 3 410, 3 260 (NH ₂ , NH); 3 260 (OH).
			$(261\cdot3)$	50·72	4.00	27.05	12.38	¹ H NMR ^b : 2·2 s, 3 H (CH ₃); 7·4 m, 4 H (Ar-H); 8·8 s, 2 H (NH ₂); 9·4 s, 1 H (NH)
IIIb	262	72	$C_{12}H_{13}N_5OS$	52-36	4.72	25.45	11.63	IR: 3 410, 3 270 (NH ₂ , NH); 3 150 (OH)
			(275.3)	52.56	4.98	25.12	11.54	
IIIc	225	7.5	$C_{12}H_{13}N_5O_2S$	49.48	4.46	24.05	10.99	IR: 3 410, 3 270 (NH ₂ , NH); 3 150 (OH)
			(291.3)	49.18	4.42	23.88	11.12	
PIII	235	65	C11H10BrN5OS	38.82	2.94	20.58	9.41	IR: 3 380, 3 270 (NH ₂ , NH); 3 150 (OH)
			(340.2)	39.00	3.12	20.32	9.36	

⁴ In CDCl₃; ^b in (CD₃)₂SO.

TABLE II Physical constants and spectral data of compounds IV-VII

Com-	M.p.	Yield	Yield Molecular formula		Calc	Calculated/Found	punc		Oncode Jaco
punod	၁့	%	(M.w.)	% C		N% H%	s %	% Br	Specifal data
IVa	213	87	$C_{19}H_{15}N_{5}OS$ (361·4)	63·15 62·87	4.15	19·39 19·52	98·8 9·00	1	IR: 3 110 (OH); 1 670 (C=N); 1 600 (C=N)
11/6	205-207	85	$C_{20}H_{17}N_{5}OS$ (375·5)	64·00 63·82	4·53 4·72	18.66	8·53 8·72	1 1	IR: 3 120 (OH); 1 670 (C=N); 1 600 (C=N)
IVc	172-174	85	$C_{20}H_{17}N_{5}O_{2}S$ (391·5)	61·38 61·52	4.34	17-90 18·10	8.18	1 1	IR: 3 120 (OH); 1 670 (C=N); 1 590 (C=N)
PAI	215-217	78	C ₁₉ H ₁₄ BrN ₅ OS (440·3)	51·81 52·00	3.18	15-90	7.27	18·18	18-18 IR: 3 120 (OH); 1 670 (C=N); 1 580 18-30 (C=N). ¹ H NMR ² : 2-4 s, 3 H (CH ₃ C=N); 7-4 m, 9 H (Ar-H, CH thiazole); 13·3 s, 1 H (OH)
Va	265-267	75	$C_{13}H_{11}N_5O_2S$ (301·3)	51·82 52·08	3.65	23.25	10·63 10·54	I	IR: 3 250-3 100 (NH, OH); 1 700 (C=O). ¹ H NMR ^b : 2,4 s, 3 H (CH ₃); 4·0 s, 2 H (CH ₂); 7·5-7·0 m, 4 H (Ar-H); 12·2 s,

			_		
(C=O). ¹ H NMR ^c : 2.9 s, 3 H (CH ₃ C=N); 3.9 s, 3 H (OCH ₃); 4·3 s, 2 H (CH ₂); 7·8-7·0 m, 3 H (Ar-H)·10·0 s, 1 H (OH)	IR: 3 340-3 200 (NH, OH); 1 700 (C=O)	IR: 3 500 (NH, OH); 1 700 (C=O)	IR: 3 500—3 300 (NH, OH); 1 680—1 650 (C=O)	IR: 3 500—3 300 (NH, OH); 1 680—1 650 (C=O).	H NMR: 1'1' t, 3 H (CH ₃ estel), 5'0's, 3 H (CH ₃); 3.7 s, 1 H (CH thiazole); 4'0'q, 2 H (CH ₂ ester); 7'2-6'9 m, 4 H (Ar-H)
1	21·05 20·80	1 1	1-1	1 1	
9.42	8·42 8·12	10·15 10·34	9.72	8.57	
20.88	18·42 18·66	22·22 22·00	21.27 21.58	18·76 19·00	
4.18	2.63	4·12 3·95	4.55	4·02 3·84	
51.03	41.05	53-33	54·71 55·00	51·47 51·69	
(331.4)	$C_{13}H_{10}BrN_5O_2S$ (380·2)	$C_{14}H_{13}N_5O_2S$ (315.4)	$C_{15}H_{15}N_5O_2S$ (329-4)	$C_{16}H_{15}N_5O_4S$ (373·4)	
	70	72	65	65	
	>300	250	>300	272—275	
	<i>7,4</i>	VIa	VIb	VIIa	
	(331.4) 51.03 4.18 20.88 9.42	$>300 \qquad 70 C_{13}H_{10}BrN_{5}O_{2}S \qquad 41.05 \qquad 2.63 \qquad 18.42 \qquad 8.42 \qquad 21.05 \qquad (380-2) \qquad 40.82 \qquad 2.94 \qquad 18.66 \qquad 8.12 \qquad 20.80 \qquad (380-2) $	$>300 \qquad 70 \mathbf{C_{13}H_{10}BrN_{5}O_{2}S} \qquad 41.05 2.63 18.42 8.42 21.05$ $>300 \qquad 72 \mathbf{C_{14}H_{13}N_{5}O_{2}S} \qquad 41.05 2.64 18.66 8.12 20.80$ $>300 \qquad 72 \mathbf{C_{14}H_{13}N_{5}O_{2}S} \qquad 53.33 4.12 22.22 10.15 -10$	$>300 \qquad 70 C_{13}H_{10}BrN_{5}O_{2}S \qquad 41.05 2.63 18.42 8.42 21.05 \\ (380·2) \qquad 40·82 2.94 18.66 8.12 20·80 \\ (315·4) \qquad 53.56 \qquad 3.95 22.22 10·15 \\ (315·4) \qquad 53.56 \qquad 3.95 21.27 9.72 \\ (329·4) \qquad 55·00 4.32 21·58 9·62 -$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

^a In CDCl₃; ^b in (CD₃)₂SO; ^c in CF₃CO₂H.

$$R \longrightarrow C = N - N \longrightarrow S$$

$$V \longrightarrow N$$

In formulae $||| - V|| : \alpha_i R = H_i b_i R = CH_3 c_i R = OCH_3 c_i R = Br$

SCHEME 2

SCHEME 3

SCHEME 4

EXPERIMENTAL

Melting points are not corrected. All reagents were purified before use. IR spectra were determined on a Perkin-Elmer Spectrometer using KBr disc technique and are given in cm⁻¹. ¹H NMR were obtained on 90 MHz Varian spectrometer in δ ppm relative to TMS. Elemental analyses were performed using Perkin-Elmer 240 C microanalyzer.

3-Acetyl-4-hydroxycinnolines IIa-IId

A mixture of ethyl 2-arylhydrazono-3-oxobutanoate (0.01 mol), aluminium chloride (0.02 mol) and chlorobenzene (30 ml) was refluxed on water bath for one hour, then the reaction mixture was allowed to cool and poured into concentrated HCl (50 ml). The solid product was filtered off and recrystallized from benzene as yellow crystals. The physical constants and spectral data of compounds IIa—IId are presented in Table 1.

Thiosemicarbazones of 3-Acetyl-4-hydroxycinnolines IIIa-IIId

A mixture of cinnoline II (0.01 mol), thiosemicarbazide (0.01 mol) and acetic acid (30 ml) was refluxed for two hours, then the reaction mixture was allowed to cool. The solid product was filtered off and recrystallized from ethanol to give orange crystals IIIa—IIId. The physical constants and spectral data are listed in Table I.

Reaction of Thiosemicarbazones IIIa—IIId with α-Haloketones and α-Haloesters

To a mixture of thiosemicarbazone III (0.01 mol) and α -haloketone or α -haloester (0.01 mol) in ethanol (30 ml), sodium acetate (2 g) was added. The mixture was refluxed for 4 h, then allowed to cool, the solid product was collected and recrystallized from acetic acid to yield yellow crystals of compounds IV-VII. The physical constants and spectral data of compounds IV-VII are given in Table II.

Reaction of Thiosemicarbazone IIIa with Diethyl Malonate

A mixture of compound IIIa (0.01 mol) and diethyl malonate (0.01 mol) was refluxed in alcoholic solution of sodium ethoxide for 5 h. The reaction mixture was allowed to cool and then acidified with acetic acid. The solid product was filtered off and recrystallized from ethanol to give yellow crystals of compound VIII in 67% yield, m.p. 195-7°C. For C₁₄H₁₁N₅O₃S (329·3) calculated: 51·06% C, 3·34% H, 21·27% N, 9·72% S; found: 50·84% C, 3·56% H, 21·30% N, 9·65% S. IR spectrum: 3 180 (NH); 1 690-1 670 (2 C=O); 1 590 (C=N). ¹H NMR in (CD₃)₂SO: 2·1 s, 3 H (CH₃); 7·6 s, 1 H (CH of pyrimidine ring); 7·0-7·5 m, 4 H (Ar-H); 11·7 s, 2 H (2 OH).

3-Methyl-pyrazolo[4,5-c]cinnolines IXa, IXb

A mixture of cinnoline II (0.01 mol) and hydrazine hydrate (0.01 mol) in ethanol (30 ml) was refluxed for 5 h, then the reaction mixture was allowed to cool. The solid product was filtered off and recrystallized from ethanol as orange crystals of compound IXa, IXb. The physical constants and spectral data are reported in Table III.

3-Methyl-1-phenyl-pyrazolo[4,5-c]cinnolines IXc-IXe

A mixture of compound II (0.01 mol) and phenylhydrazine (0.01 mol) in acetic acid (30 ml) was

Collect. Czech. Chem. Commun. (Vol. 56) (1991)

TABLE III
Physical constants and spectral data of compounds IX

Com-	M.p.,	Yield	Molecular formula	Calc	Calculated/Found	pun	Constant Jaco
punod	၁့	%	(M.w.)	%C	Н%	z %	Operital data
IXa	198	88	$C_{10}H_8N_4$ (184·2)	65·21 65·38	4·34 4·12	30·43 30·65	IR: 3 170 (NH). ¹ H NMR ⁴ : 2·3 s, 3 H (CH ₃); 7·0–7·5 m, 4 H (Ar-H); 8·9 s, 1 H (NH)
IXb	205-207	80	$C_{11}H_{10}N_4O$ (214·2)	61·68 61·82	4·67 4·43	26·16 26·00	IR: 3 150 (NH). ¹ H NMR ² : 2·2 s, 3 H (CH ₃ —C=N); 3·8 s, 3 H (OCH ₃); 7·0—7·4 m, 3 H (Ar-H); 10·4 s, 1 H (NH)
IXc	150	70	$C_{16}H_{12}N_4$ (260·3)	73·84 74·05	4·61 4·75	21·53 21·37	IR: 1 650 (C=N). ¹ H NMR ^a : 2·35 s, 3 H (CH ₃); 7·1-7·9 m, 9 H (Ar-H)
PXI	133—135	75	$C_{17}H_{14}N_4$ (274·3)	74·18 73·92	5.45 5.22	20·36 20·54	IR: 1 650 (C=N)
IXe	137—139	83	$C_{17}H_{14}N_{4}O$ (290·3)	70·10 69·85	5.15	19-24	IR: 1650 (C=N). ¹ H NMR ^a : 2·3 s, 3 H (CH ₃ —C=N); 3·8 s, 3 H (OCH ₃); 6·9—8·0 m, 8 H (Ar-H)

" In CDCl1.

refluxed for 4 h, then allowed to cool. The solid product was filtered off and recrystallized from ethanol to produce orange crystals of compound IXc-IXe. The physical constants and spectral data of compound IXc-IXe are listed in Table III.

3-Cyano-4-methyl-pyrido[3,2-c]cinnoline-2(1H)-one X

To a mixture of cinnoline IIa (0.01 mol) and malononitrile (0.01 mol) in ethanol (30 ml), several drops of piperidine were added and the mixture was refluxed for two hours, then the reaction mixture was allowed to cool. The solid product was filtered off and recrystallized from ethanol as yellowish white crystals in 65% yield, m.p. > 300°C. For $C_{13}H_8N_4O$ (236·2) calculated: 66·10% C, 3·88% H, 23·72% N; found: 65·84% C, 3·52% H, 23·80% N. IR spectrum: 3 310 (NH); 2 230 (C=N); 1 700 (C=O). ¹H NMR in CDCl₃: 3·15 s, 3 H (CH₃); 6·7 s, 1 H (NH); 7·0 to 7·6 m, 4 H (Ar-H).

3-Cyano-4-methyl-pyrano[3,2-c]cinnoline XI

A mixture of cinnoline IIa (0.01 mol) and ethyl cyanoacetate (0.01 mol) was heated at 160 to 170°C for 5 h. The reaction mixture was allowed to cool, and the solid product was filtered off and recrystallized from ethanol to produce yellowish white crystals of compound XI in 70% yield, m.p. 267-70°C. For $C_{13}H_7N_3O_2$ (237·2) calculated: 65.82% C, 2.95% H, 17.22% N; found: 66.08% C, 3.18% H, 17.53% N. IR spectrum: 2.250 (C=N); 1.760 (C=O). ¹H NMR in (CD₃)₂SO: 2.65 s, 3 H (CH₃); 7.0-7.8 m, 4 H (Ar-H).

Bromination of 3-Acetyl-4-hydroxycinnoline

- A) Using Br₂/AcOH or Br₂/CHCl₃: To a solution of cinnoline IIa (0.01 mol) in acetic acid or chloroform bromine (0.01 mol) was added dropwise with stirring. After the addition was finished, the solid product was filtered off and recrystallized from ethanol to give yellow needles of 3-acetyl-6-bromo-4-hydroxycinnoline IId in 80% yield, m.p. 220°C. For C₁₀H₇BrN₂O₂ (267·1) calculated: 44·94% C, 2·62% H, 29·96% Br, 10·48% N; found: 45·12% C, 2·98% H, 30·27% Br, 10·12% N.
- B) Using NBS: A mixture of cinnoline IIa (0.01 mol) and NBS (0.01 mol) in CCl₄ (30 ml) was refluxed for 6 h, then the mixture was filtered to remove the formed succinimide and the filtrate was concentrated. The solid product was crystallised from petroleum ether to give XII as yellowish white crystals in 75% yield, m.p. 112°C. For C₁₀H₇BrN₂O₂ (267·1) calculated: 44·94% C, 2·62% H, 29·96% Br, 10·48% N; found: 44·75% C, 2·93% H, 30·18% Br, 10·56% N. IR spectrum: 3 250 (OH); 1 700 (C=O). ¹H NMR in CDCl₃: 2·6 s, 2 H (CH₂); 7·0-7·6 m, 4 H (Ar-H); 8·5 s, 1 H (OH).

REFERENCES

- Tišler N., Stanovnik B. in: Comprehensive Heterocyclic Chemistry (A. Boulton and A. McKillop, Eds), Vol. 3. Pergamon Press, Oxford 1984.
- 2. Bevan K., Davies J., Hassal C., Morton R., Phillips D.: J. Chem. Soc., C 1971, 514.
- 3. Atta-Ur-Rahman, Malik S., Cun-heng He., Clardy J.: Tetrahedron Lett. 26, 2759 (1985).
- 4. Suortti T., Von Wright A., Koskinen A.: Phytochemistry 22, 2873 (1983).
- 5. Gewald K., Calderon O., Schafer H., Hain U.: Justus Liebigs Ann. Chem. 1984, 1390.